Effect of C-terminal protein tags on pentitol and L-arabinose transport by Ambrosiozyma monospora Lat1 and Lat2 transporters in Saccharomyces cerevisiae.
نویسندگان
چکیده
Functional expression in heterologous hosts is often less successful for integral membrane proteins than for soluble proteins. Here, two Ambrosiozyma monospora transporters were successfully expressed in Saccharomyces cerevisiae as tagged proteins. Growth of A. monospora on l-arabinose instead of glucose caused transport activities of l-arabinose, l-arabitol, and ribitol, measured using l-[1-(3)H]arabinose, l-[(14)C]arabitol, and [(14)C]ribitol of demonstrated purity. A. monospora LAT1 and LAT2 genes were cloned earlier by using their ability to improve the growth of genetically engineered Saccharomyces cerevisiae on l-arabinose. However, the l-arabinose and pentitol transport activities of S. cerevisiae carrying LAT1 or LAT2 are only slightly greater than those of control strains. S. cerevisiae carrying the LAT1 or LAT2 gene fused in frame to the genes for green fluorescent protein (GFP) or red fluorescent protein (mCherry) or adenylate kinase (AK) exhibited large (>3-fold for LAT1; >20-fold for LAT2) increases in transport activities. Lat1-mCherry transported l-arabinose with high affinity (Km ≈ 0.03 mM) and l-arabitol and ribitol with very low affinity (Km ≥ 75 mM). The Lat2-GFP, Lat2-mCherry, and Lat2-AK fusion proteins could not transport l-arabinose but were high-affinity pentitol transporters (Kms ≈ 0.2 mM). The l-arabinose and pentitol transport activities of A. monospora could not be completely explained by any combination of the observed properties of tagged Lat1 and Lat2, suggesting either that tagging and expression in a foreign membrane alters the transport kinetics of Lat1 and/or Lat2 or that A. monospora contains at least one more l-arabinose transporter.
منابع مشابه
Establishment and characterization of mammalian cell lines stably expressing human L-type amino acid transporters.
System L (SL), a basolateral amino acid transporter, transports large neutral amino acids (LNAAs) in a Na(+)-independent manner. Previously, we identified two isoforms of transporters: L-type amino acid transporter 1 (LAT1) and 2 (LAT2) and revealed their distinct substrate selectivity and transport properties. In this study, to establish more stable human LAT1 (hLAT1) and LAT2 (hLAT2) in vitro...
متن کاملOrnithine transport via cationic amino acid transporter-1 is involved in ornithine cytotoxicity in retinal pigment epithelial cells.
PURPOSE A prior report showed ornithine cytotoxicity in ornithine-delta-aminotransferase (OAT)-deficient human retinal pigment epithelial (RPE) cells in an in vitro model of gyrate atrophy of the choroid and retina. This study was intended to clarify the mechanism of ornithine cytotoxicity and to determine the responsible amino acid transporters. METHODS The mRNA expression of amino acid tran...
متن کاملPPARγ stimulates expression of L-type amino acid and taurine transporters in human placentas: the evidence of PPARγ regulating fetal growth
Placental amino acid transporters and peroxisome proliferator-activated receptors (PPARs) have been implicated to placental development and therefore regulation of fetal growth. We analyzed the correlation between the expression of amino acid transporters and PPARs and investigated whether PPARs control the expression of amino acid transporters in placentas. It was found that protein expression...
متن کاملRegulation of Renal LAT2 and 4F2hc Expression by Aldosterone
In the spontaneous hypertensive rat, overexpression of the renal Na-independent L-amino acid transporter LAT2 is organ specific, precedes the onset of hypertension, correlates negatively with plasma aldosterone, and parallels the enhanced ability to take up L-DOPA and form renal dopamine. The present study evaluated the role of aldosterone on transcript and protein abundance of Na-independent a...
متن کاملExpression and functional characterisation of System L amino acid transporters in the human term placenta
BACKGROUND System L transporters LAT1 (SLC7A5) and LAT2 (SLC7A8) mediate the uptake of large, neutral amino acids in the human placenta. Many System L substrates are essential amino acids, thus representing crucial nutrients for the growing fetus. Both LAT isoforms are expressed in the human placenta, but the relative contribution of LAT1 and LAT2 to placental System L transport and their subce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 80 9 شماره
صفحات -
تاریخ انتشار 2014